Repositorio ANID Producción científica asociada a proyectos y becas financiadas por ANID

  • Login
Más tiposGuía de búsquedas avanzadas
  • Programa
  • Institución
  • Año de concurso
  • Disciplinas
    • Disciplinas Fondecyt
    • Áreas Fondef
    • Sector de aplicación
    • Clasificaciones OECD
  • Regiones de Chile
  • Menu
    • Programa
    • Institución
    • Año de concurso
    • Disciplinas Fondecyt
    • Áreas Fondef
    • Sector de aplicación
    • Clasificaciones OECD
    • Regiones de Chile
View Item 
  •   DSpace Home
  • Resultados de Proyectos
  • Productividad
  • Tesis
  • View Item
  •   DSpace Home
  • Resultados de Proyectos
  • Productividad
  • Tesis
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Deep Learning Based Framework For Physical Assets' Health Prognostics Under Uncertainty For Big Machinery Data

Type
Tesis Magíster
Program
Programa FONDECYT
Conicyt Instrument
Proyectos Regulares
Author
Cofré-Martel, Sergio Manuel
Abstract
The ongoing development in sensor technology has allowed engineers to monitor complex systems through multisensorial data, generating thousands of data-points in time. This big machinery database is commonly stored to later be used by engineers for reliability purposes through traditional Prognostics and Health Management (PHM) techniques. However, most part of this valuable information is often wasted since PHM methods frequently rely on expert ...   Ver más
The ongoing development in sensor technology has allowed engineers to monitor complex systems through multisensorial data, generating thousands of data-points in time. This big machinery database is commonly stored to later be used by engineers for reliability purposes through traditional Prognostics and Health Management (PHM) techniques. However, most part of this valuable information is often wasted since PHM methods frequently rely on expert knowledge for their implementation, as well as a good understanding of the physics of failure that govern the system. Hence, to estimate reliability related parameters, such as the State of Health (SOH) or the Remaining Useful Life (RUL) of electrical and mechanical components, data-driven approaches can be applied to complement PHM methods. In this context, the purpose of this thesis is to develop and implement a novel Deep Learning (DL) framework for the health state estimation of systems and components, based on big machinery data. Accordingly, the following specific objectives are defined: Develop an architecture capable of extracting temporal and spatial characteristics from the data. Propose a health state estimation framework, and validate it using two benchmark datasets: C-MAPSS turbofan engine, and CS2 Lithium-Ion Batteries datasets. Finally, give an estimation of the uncertainty propagation for the health state prognostics yield by the proposed framework. This thesis proposes a DL framework, which integrates the advantages of spatial management from Convolutional Neural Networks, along with the sequential analysis capabilities from Long-Short Term Memory Recurrent Neural Networks. Dropout is used as a regularization technique, as well as a Bayesian Approximation for the estimation of the uncertainty of the model. Henceforth, the proposed architecture is named CNNBiLSTM. For the C-MAPSS dataset, four different models are trained, one for each sub-dataset, aimed to estimate the RUL. All four models yield state-of-the-art results for the Root Mean Square Error (RMSE) on their prognostics, showing robustness in the training process and small uncertainty for the test RMSE as well as for the RUL prediction. Similar results are obtained for the CS2 dataset, where the model trained using all battery cells estimates the State of Charge and SOH of the batteries with a lower RMSE than the state-of-the-art results, and a small uncertainty over its estimated values. Results yielded by the trained models show that the proposed DL framework is adaptable to different systems and can successfully obtain abstract temporal relationship from the sensorial data for reliability assessment. Furthermore, models show robustness during the training process, as well as an accurate output estimation with a small uncertainty   Ver menos
Project Id
1160494
Institution
Universidad de Chile
Contest
Concurso Nacional Regular 2016
Date de publicación
2018
Academic guide
López-Droguett, Enrique Andrés
URI
http://repositorio.uchile.cl/bitstream/handle/2250/168080/A-deep-learning-based-framework-for-physical-assets%27-health-prognostics-under-uncertainty-for-big-Machinery-Data.pdf?sequence=1&isAllowed=y
Metadata
Show full item record

ANID Agencia Nacional de Investigación y Desarrollo

Moneda 1375, Santiago de Chile. Teléfono (+56 2) 365 44 00

¿NECESITAS AYUDA?

Centro de ayuda OIRS

o llámanos directamente al

(+56 2) 365 44 00

  • Políticas de Privacidad
  • Gobierno Transparente
  • Trabaja con Nosotros
  • Donación de Bienes
  • Webmail
  • Contacto
  • Acerca de RI 2.0
  • Otros repositorios
  • Políticas
  • Recursos de Información Anid
  • Ayuda
  • FAQs
Material de Donación
Contacto:

Moneda 1375, piso 13, Santiago.
Teléfono: (+562) 36 54 462.
Horario: L-J: 09:00 a 17:00 hrs.                   Vi: 09:00 a 14:00 hrs.

biblioteca@anid.cl

Nuevo Depósito
Política de Depósito

Browse

All of DSpaceCommunities & CollectionsThis CollectionAuthorsTitlesProject IdDocument TypeSubject

ANID Agencia Nacional de Investigación y Desarrollo

Moneda 1375, Santiago de Chile. Teléfono (+56 2) 365 44 00

¿NECESITAS AYUDA?

Centro de ayuda OIRS

o llámanos directamente al

(+56 2) 365 44 00

  • Políticas de Privacidad
  • Gobierno Transparente
  • Trabaja con Nosotros
  • Donación de Bienes
  • Webmail
  • Contacto
  • Acerca de RI 2.0
  • Otros repositorios
  • Políticas
  • Recursos de Información Anid
  • Ayuda
  • FAQs
       

Guía de búsquedas avanzadas

Nuestro Repositorio Digital cuenta con un gran número de búsquedas avanzadas, te invitamos a conocerlas mediante este video tutorial, aprenderás a utilizarlas para enriquecer tus resultados de búsqueda.

Versión PDF
  • Simple
  • Filtros
  • Frases
  • Metadato
  • Comodín
  • Difusa
  • Proximidad
  • Booleanos
  • Agrupación
  • Fechas
  • Ejemplos
Tu navegador no soporta videos HTML5, Puedes descargarlo.